杂度分析原来这么简单

2年前 (2022) 程序员胖胖胖虎阿
257 0 0

杂度分析原来这么简单

作者 |  小鹿

来源 |  一个不甘平凡的码农

杂度分析原来这么简单
杂度分析原来这么简单
杂度分析原来这么简单
杂度分析原来这么简单

1、数据结构是用来干嘛的?

数据结构与算法的诞生是让计算机「执行的更快」、「更省空间」的。

2、用什么来评判数据结构与算法的好坏?

从「执行时间」和「占用空间」两个方面来评判数据结构与算法的好坏。

3、什么是复杂度?

用「时间复杂度」和「空间复杂度」来描述性能问题,两者统称为复杂度。

4、复杂度描述了什么?

复杂度描述的是算法执行时间(或占用空间)与数据规模的增长关系。

杂度分析原来这么简单

1、和性能分析相比有什么优点?

辅助度分析有不依赖执行环境、成本低、效率高、易操作、指导性强的特点。


2、为什么要复杂度分析?

复杂度描述的是算法执行时间(或占用空间)与数据规模的增长关系。

杂度分析原来这么简单

1、什么方法可以进行复杂度分析?

方法:「大 O 表示法」

2、什么是大 O 表示法?

算法的「执行时间」与每行代码的「执行次数」成正比【T(n) = O(f(n)) 】=》其中T(n)表示算法执行总时间,f(n)表示每行代码执行总次数,而n往往表示数据的规模。

3、大 O 表示法的特点?

由于时间复杂度描述的是算法执行时间与数据规模的增长变化趋势,常量阶、低阶以及系数实际上对这种增长趋势不产决定性影响,所以在做时间复杂度分析时忽略这些项。


4、复杂度分析法则

  • [单段代码看频率]:看代码片段中「循环代码」的时间复杂度。

  • [多段代码看最大]:如果多个 for 循环,看「嵌套循环最多」的那段代码的时间复杂度。

  • [嵌套代码求乘积]:循环、递归代码,将内外嵌套代码求乘积去时间复杂度。

  • [多个规模求加法]: 法有两个参数控制两个循环的次数,那么这时就取二者复杂度相加。

------------------------------------

时间复杂度

1、什么是复杂度?

所有代码的「执行时间 T(n)」 与每行代码的「执行次数n」 成正比【T(n) = O(f(n)) 】。


2、分析的三个方法


■ 最多法则

忽略掉公式中的常量、低阶、系数,取最大循环次数就可以了,也就是循环次数最多的那行代码。


   Example


1// 求n个数字之和
2int xiaolu(int n) {
3   int sum = 0;
4   for (int i = 1; i <= n; ++i) {
5     sum = sum + i;
6   }
7   return sum;
8 }


   分析

-------------------------------------------

第二行是一行代码,也就是常量级别,与 n 没有关系,可以忽略,四、五行代码是我们重点分析对象,与 n 有关,时间复杂度就是反映执行时间和 n 数据规模的关系。求 n 个数据之和需要执行 n 次。所以时间复杂度为 O(n)。


 加法法则

总复杂度等于循环次数最多的那段复杂度。


   Example

 1int xiaolu(int n) {
2   int sum = 0;
3   //循环一
4   for (int i = 1; i <= 100; j++) {
5     sum = sum + i;
6   }
7   //循环二
8   for (int j = 1; j <= n; j++) {
9      sum = sum + i;
10   }
11 }


   分析

-------------------------------------------

上边有两个循环,一个循环 100 次,另一个循环 n 次,我们选择循环次数最多的那一个且和「数据规模 n 」相关的循环。由上可知,我们很容易选出循环二,即和数据规模 n 有关,循环次数最多,循环次数最多的那段代码时间复杂度就代表总体的时间复杂度,为 O(n) ;



 乘法法则

当我们遇到嵌套的 for 循环的时候,怎么计算时间复杂度呢?那就是内外循环的乘积。


   Example


1 for (int j = 1; j <= n; j++) {
2     for(int i = 1; i <= n; i++)
3     sum = sum + i;
4 }


   分析

-------------------------------------------

外循环一次,内就循环 n 次,那么外循环 n 次,内就循环 n*n 次。所以时间复杂为 O(n²)。



空间复杂度

1、什么是空间复杂度?

表示算法的「存储空间」与「数据规模」之间的增长关系

   Example


 1int xiaolu(int n) {
2   int sum = 0;
3   //循环一
4   for (int i = 1; i <= 100; j++) {
5     sum = sum + i;
6   }
7   //循环二
8   for (int j = 1; j <= n; j++) {
9      sum = sum + i;
10   }
11 }


   分析

-------------------------------------------

在所有代码中,我们很容易寻找到存储空间相关的代码,就是第二行,申请了一个 n 大小的存储空间,所以空间复杂度为 O(n)。


2、最常见的空间复杂度

O(1)、O(n)、O(n²)。


■ O(1)

常量级的时间复杂度表示方法,无论是一行代码,还是多行,只要是常量级的就用 O(1) 表示。

   Example


1int i = 1;
2int j = 2;
3int sum = i + j;

   分析

-------------------------------------------

因为这三行代码,也就是常量级别的代码不随 n 数据规模的改变而改变。(循环、递归除外)


■ O(logn) | O(nlogn)

对数阶时间复杂度」,最难分析的一种时间复杂度。

   Example


1 i=1;
2 while (i <= n)  {
3   i = i * 3;
4 }


   分析

-------------------------------------------

要求这段代码的时间复杂度就求这段代码执行了多少次,看下图具体分析。


杂度分析原来这么简单


   补充

-------------------------------------------

不管是以 2 为底、以 3 为底,还是以 10 为底,可以把所有对数阶的时间复杂度都记为 O(logn),因为对数之间可以转换的,参照高中课本。


 O(m+n) | O(m*n)

参照上边讲到的加法和乘法法则。


杂度分析原来这么简单


杂度分析原来这么简单

杂度分析原来这么简单

1、最好、最坏时间复杂度

所谓的最好、最坏时间复杂度分别对应代码最好的情况和最坏的情况下的执行。

   Example


1 //在一个 array 数组中查找一个数据 a 是否存在
2for (int i = 1; i < n; i++) {
3    if (array[i] == a) {
4       return i;
5    }
6 }

   分析:

-------------------------------------------

1、最好情况就是数组的第一个就是我们要查找的数据,上边代码之执行一遍就可以,这种情况下的时间复杂度为最好时间复杂度,为 O(1)。

2、最坏的情况就是数组的最后一个才是我们要查找的数据,需要循环遍历 n 遍数组,也就对应最坏的时间复杂度为 O(n) 。

2、平均时间复杂度

平均时间复杂度需要借助概率论的知识去分析,也就是我们概率论中所说的加权平均值,也叫做期望值。

   分析

-------------------------------------------

比如上方的例子,假设我们查找的数据在数组中的概率为 1/2;出现在数组中的概率为 n/1,根据下边的公式就可以算出出现的概率为 1/2n 。

杂度分析原来这么简单

然后我们再把每种情况考虑进去,就可以计算出平均时间复杂度。

杂度分析原来这么简单


3、均摊时间复杂度


■什么是均摊时间复杂度?

比如我们每 n 次插入数据的时间复杂度为 O(1),就会有一次插入数据的时间复杂度为 O(n),我们将这一次的时间复杂度平均到 n 次插入数据上,时间复杂度还是 O(1)。


 摊还分析

比如我们每 n 次插入数据的时间复杂度为 O(1),就会有一次插入数据的时间复杂度为 O(n),我们将这一次的时间复杂度平均到 n 次插入数据上,时间复杂度还是 O(1)。


 适用场景

一般应用于某一数据结构,连续操作时间复杂度比较低,但是个别情况时间复杂度特别高,我们将特别高的这一次进行均摊到较低的操作上。

 几种复杂度性能对比


杂度分析原来这么简单

各个时间复杂度的性能

杂度分析原来这么简单

本文作者:「小鹿」,运营个人订阅号「一个不甘平凡的码农」。

1. 两个月拿到阿里的Offer,经验分享!

2. PC时代,流量最大页面是哪个?

3. 全文搜索引擎

4. 微信扫码登录实战

杂度分析原来这么简单

本文分享自微信公众号 - Java后端(web_resource)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

版权声明:程序员胖胖胖虎阿 发表于 2022年10月4日 下午3:48。
转载请注明:杂度分析原来这么简单 | 胖虎的工具箱-编程导航

相关文章

暂无评论

暂无评论...