AQS详解

2年前 (2022) 程序员胖胖胖虎阿
277 0 0

AQS是AbstractQueuedSynchronizer的简称。AQS提供了一种实现阻塞锁和一系列依赖FIFO等待队列的同步器的框架,如下图所示。AQS为一系列同步器依赖于一个单独的原子变量(state)的同步器提供了一个非常有用的基础。子类们必须定义改变state变量的protected方法,这些方法定义了state是如何被获取或释放的。鉴于此,本类中的其他方法执行所有的排队和阻塞机制。子类也可以维护其他的state变量,但是为了保证同步,必须原子地操作这些变量。

AQS详解
使用一个volatile的int类型的state表示同步状态,通过内置的FIFO队列CLH完成资源获取的排队工作,将资源封装为Node,通过cas改变state值

AQS同时提供了互斥模式(exclusive)和共享模式(shared)两种不同的同步逻辑。一般情况下,子类只需要根据需求实现其中一种模式,当然也有同时实现两种模式的同步类,如ReadWriteLock。

state状态

AbstractQueuedSynchronizer维护了一个volatile int类型的变量,用户表示当前同步状态。volatile虽然不能保证操作的原子性,但是保证了当前变量state的可见性。

    /**
     * The synchronization state.
     */
    private volatile int state;
  
    /**
     * Returns the current value of synchronization state.
     * This operation has memory semantics of a {@code volatile} read.
     * @return current state value
     */
    protected final int getState() {
        return state;
    }

    /**
     * Sets the value of synchronization state.
     * This operation has memory semantics of a {@code volatile} write.
     * @param newState the new state value
     */
    protected final void setState(int newState) {
        state = newState;
    }

    /**
     * Atomically sets synchronization state to the given updated
     * value if the current state value equals the expected value.
     * This operation has memory semantics of a {@code volatile} read
     * and write.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that the actual
     *         value was not equal to the expected value.
     */
    protected final boolean compareAndSetState(int expect, int update) {
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

自定义资源共享方式

AQS定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如ReentrantLock)和Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。

源码实现

1.Lock

ReentrantLock -> Sync -> NonfairSync(非公平) -> acquire -> tryAcquire/addWaiter/acquireQueued/selfInterrupt

    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        /**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.
         */
        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

通过注释我们知道,acquire方法是一种互斥模式,且忽略中断。该方法至少执行一次tryAcquire(int)方法,如果tryAcquire(int)方法返回true,则acquire直接返回,否则当前线程需要进入队列进行排队。函数流程如下:

  1. tryAcquire()尝试直接去获取资源,如果成功则直接返回;
  2. addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
  3. acquireQueued()使线程在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
  4. 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。

tryAcquire

    protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }

子类继承,没有实现的话直接抛出异常

AQS详解

        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

1.判断状态位是否为0,0是可以占用,如果是0的话占用,不是0的话返回false
2.判断当前线程是否为得到位置的线程,比如如果前一个线程走了,然后又回来有点事情的话,那么返回false

addWaiter

添加到队列的过程

    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

第一次队列无Node的时候返回直接进入enq()方法,如果有Node话会进入if
if中有一个cas操作,比较和交换了头指针和当前Node。
使得当前进入的第三个Node和第二个Node接在了一起
AQS详解

enq

    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

这里的一开始的头指针设置为空Node作为占位符。是傀儡节点,哨兵节点。
第二次进入的时候第二个节点的头节点指的是空节点,然后cas使得尾结点指向第二个节点。
哨兵节点的下一个节点指向第二个节点。于是形成了一个双向链表。

AQS详解

acquireQueued

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

acquireQueued()用于队列中的线程自旋地以独占且不可中断的方式获取同步状态(acquire),直到拿到锁之后再返回。该方法的实现分成两部分:如果当前节点已经成为头结点,尝试获取锁(tryAcquire)成功,然后返回;否则检查当前节点是否应该被park,然后将该线程park并且检查当前线程是否被可以被中断。

shouldParkAfterFailedAcquire

shouldParkAfterFailedAcquire方法通过对当前节点的前一个节点的状态进行判断,对当前节点做出不同的操作,至于每个Node的状态表示。也是为了解决哨兵节点的waitState从0改为-1。于是可以操作后面的节点。判断后面的节点是否进行park

    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    	// 获取当前节点状态
        int ws = pred.waitStatus;
        // 如果是SIGNAL的话,线程被释放,返回true
        if (ws == Node.SIGNAL)
            return true;
        // ws大于0表示ws = 1
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

parkAndCheckInterrupt()

该方法让线程去休息,真正进入等待状态。park()会让当前线程进入waiting状态。在此状态下,有两种途径可以唤醒该线程:1)被unpark();2)被interrupt()。需要注意的是,Thread.interrupted()会清除当前线程的中断标记位。

    private final boolean parkAndCheckInterrupt() {
       LockSupport.park(this);
       return Thread.interrupted();
   }

这个方法才是真正让线程进入等待状态进入waiting状态。
1.自己unpark 2.被中断

总结

  1. 调用自定义同步器的tryAcquire()尝试直接去获取资源,如果成功则直接返回;
  2. 没成功,则addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
  3. acquireQueued()使线程在等待队列中休息,有机会时(轮到自己,会被unpark())会去尝试获取资源。获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
  4. 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。

2.unlock

unlock -> release -> tryrelease ->

    public void unlock() {
       sync.release(1);
   }

release

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

tryRelease

        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

与acquire()方法中的tryAcquire()类似,tryRelease()方法也是需要独占模式的自定义同步器去实现的。正常来说,tryRelease()都会成功的,因为这是独占模式,该线程来释放资源,那么它肯定已经拿到独占资源了,直接减掉相应量的资源即可(state-=arg),也不需要考虑线程安全的问题。但要注意它的返回值,上面已经提到了,release()是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自义定同步器在实现时,如果已经彻底释放资源(state=0),要返回true,否则返回false。
  unparkSuccessor(Node)方法用于唤醒等待队列中下一个线程。这里要注意的是,下一个线程并不一定是当前节点的next节点,而是下一个可以用来唤醒的线程,如果这个节点存在,调用unpark()方法唤醒。
  总之,release()是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。

版权声明:程序员胖胖胖虎阿 发表于 2022年10月20日 上午5:00。
转载请注明:AQS详解 | 胖虎的工具箱-编程导航

相关文章

暂无评论

暂无评论...