一、前言 最近接触的几个项目都使用到了 Elasticsearch (以下简称 ES ) 来存储数据和对数据进行搜索分析,就对 ES 进行了一些学习。本文整理自我自己的一次技术分享。 本文不会关注 ES 里面的分布式技术、相关 API 的使用,而是专注分享下 ”ES 如何快速检索“ 这个主题上面。这个也是我在学习之前对 ES 最感兴趣的部分。
本文大致包括以下内容:
关于搜索
传统关系型数据库和 ES 的差别
搜索引擎原理
细究倒排索引
倒排索引具体是个什么样子的(posting list -> term dic -> term index)
关于 postings list 的一些巧技 (FOR、Roaring Bitmaps)
如何快速做联合查询?
二、关于搜索
先设想一个关于搜索的场景,假设我们要搜索一首诗句内容中带“前”字的古诗, 用 传统关系型数据库和 ES 实现会有什么差别? 如果用像 MySQL 这样的 RDBMS 来存储古诗的话,我们应该会去使用这样的 SQL 去查询
这里我们就引出了一个概念,也是我们今天的要剖析的重点 - 倒排索引 。 也是 ES 的核心知识点。 如果你了解 ES 应该知道,ES 可以说是对 Lucene 的一个封装,里面关于倒排索引的实现就是通过 lucene 这个 jar 包提供的 API 实现的,所以下面讲的关于倒排索引的内容实际上都是 lucene 里面的内容。
三、倒排索引
首先我们还不能忘了我们之前提的搜索需求,先看下建立倒排索引之后,我们上述的查询需求会变成什么样子, 这样我们一输入“前”,借助倒排索引就可以直接定位到符合查询条件的古诗。 当然这只是一个很大白话的形式来描述倒排索引的简要工作原理。在 ES 中,这个倒排索引是具体是个什么样的,怎么存储的等等,这些才是倒排索引的精华内容。
1. 几个概念
在进入下文之前,先描述几个前置概念。
term
关键词这个东西是我自己的讲法,在 ES 中,关键词被称为 term。
postings list
还是用上面的例子, {静夜思, 望庐山瀑布} 是 "前" 这个 term 所对应列表。在 ES 中,这些被描述为所有包含特定 term 文档的 id 的集合。由于整型数字 integer 可以被高效压缩的特质,integer 是最适合放在 postings list 作为文档的唯一标识的,ES 会对这些存入的文档进行处理,转化成一个唯一的整型 id。 再说下这个 id 的范围,在存储数据的时候,在每一个 shard 里面,ES 会将数据存入不同的 segment,这是一个比 shard 更小的分片单位,这些 segment 会定期合并。在每一个 segment 里面都会保存最多 2^31 个文档,每个文档被分配一个唯一的 id,从 0 到 (2^31)-1 。 相关的名词都是 ES 官方文档给的描述,后面参考材料中都可以找到出处。 2. 索引内部结构
上面所描述的倒排索引,仅仅是一个很粗糙的模型。真的要在实际生产中使用,当然还差的很远。 在实际生产场景中,比如 ES 最常用的日志分析,日志内容进行分词之后,可以得到多少的 term? 那么如何快速的在海量 term 中查询到对应的 term 呢?遍历一遍显然是不现实的。
term dictionary
于是乎就有了 term dictionary,ES 为了能快速查找到 term,将所有的 term 排了一个序,二分法查找。是不是感觉有点眼熟,这不就是 MySQL 的索引方式的,直接用 B+树建立索引词典指向被索引的数据。
term index
但是问题又来了,你觉得 Term Dictionary 应该放在哪里?肯定是放在内存里面吧?磁盘 io 那么慢。就像 MySQL 索引就是存在内存里面了。 但是如果把整个 term dictionary 放在内存里面会有什么后果呢? 内存爆了...
别忘了,ES 默认可是会对全部 text 字段进行索引,必然会消耗巨大的内存,为此 ES 针对索引进行了深度的优化。在保证执行效率的同时,尽量缩减内存空间的占用。 于是乎就有了 term index。 Term index 从数据结构上分类算是一个“Trie 树”,也就是我们常说的字典树。这是一种专门处理字符串匹配的数据结构,用来解决在一组字符串集合中快速查找某个字符串的问题。 这棵树不会包含所有的 term,它包含的是 term 的一些前缀(这也是字典树的使用场景,公共前缀)。通过 term index 可以快速地定位到 term dictionary 的某个 offset,然后从这个位置再往后顺序查找。就想右边这个图所表示的。(怎么样,像不像我们查英文字典,我们定位 S 开头的第一个单词,或者定位到 Sh 开头的第一个单词,然后再往后顺序查询) lucene 在这里还做了两点优化,一是 term dictionary 在磁盘上面是分 block 保存的,一个 block 内部利用公共前缀压缩,比如都是 Ab 开头的单词就可以把 Ab 省去。二是 term index 在内存中是以 FST(finite state transducers)的数据结构保存的。 FST 有两个优点:
空间占用小。 通过对词典中单词前缀和后缀的重复利用,压缩了存储空间
查询速度快。 O(len(str)) 的查询时间复杂度。
FST 的理论比较复杂,本文不细讲 延伸阅读:https://www.shenyanchao.cn/blog/2018/12/04/lucene-fst/ OK,现在我们能得到 lucene 倒排索引大致是个什么样子的了。 四、关于 postings list 的一些巧技
在实际使用中,postings list 还需要解决几个痛点,
p ostings list 如果不进行压缩,会非常占用磁盘空间,
联合查询下,如何快速求交并集(intersections and unions)
对于如何压缩,可能会有人觉得没有必要,”posting list 不是已经只存储文档 id 了吗?还需要压缩?”,但是如果在 posting list 有百万个 doc id 的情况,压缩就显得很有必要了。(比如按照朝代查询古诗?),至于为啥需要求交并集,ES 是专门用来搜索的,肯定会有很多联合查询的需求吧 (AND、OR)。 按照上面的思路,我们先将如何压缩。
1. 压缩
Frame of Reference
在 lucene 中,要求 postings lists 都要是有序的整形数组。这样就带来了一个很好的好处,可以通过 增量编码(delta-encode)这种方式进行压缩。 比如现在有 id 列表 [73, 300, 302, 332, 343, 372] ,转化成每一个 id 相对于前一个 id 的增量值(第一个 id 的前一个 id 默认是 0,增量就是它自己)列表是 [73, 227, 2, 30, 11, 29] 。在这个新的列表里面,所有的 id 都是小于 255 的,所以每个 id 只需要一个字节存储。 实际上 ES 会做的更加精细, 它会把所有的文档分成很多个 block,每个 block 正好包含 256 个文档,然后单独对每个文档进行增量编码,计算出存储这个 block 里面所有文档最多需要多少位来保存每个 id,并且把这个位数作为头信息(header)放在每个 block 的前面。这个技术叫 Frame of Reference。 上图也是来自于 ES 官方博客中的一个示例(假设每个 block 只有 3 个文件而不是 256)。 FOR 的步骤可以总结为: 进过最后的位压缩之后,整型数组的类型从固定大小 (8,16,32,64 位)4 种类型,扩展到了[1-64] 位共 64 种类型。 通过以上的方式可以极大的节省 posting list 的空间消耗,提高查询性能。不过 ES 为了提高 filter 过滤器查询的性能,还做了更多的工作,那就是缓存。