Spark Optimizer 规则下的 BUG 排查与修复全记录

2年前 (2022) 程序员胖胖胖虎阿
341 0 0

本文作者: 朱明亮,观远数据计算引擎开发工程师,13 年毕业于湖南大学,有七年多的大数据研发经验。曾就职于知名互联网公司数据研发专家岗位,负责打造服务公司内部各业务线的数据中台,是开源项目 byzer-lang(基于 Spark 的开源中台计算引擎)的主要贡献者之一。

背景

测试同学在内部环境测试发现一个严重的问题,ETL 执行结果不符合预期,根据 Rawdata Date 字段筛选 等于 2022-07-12 筛选出来的数据是 7.11 号的,直接筛选 2022-07-11 出来的数据是空的。

Spark Optimizer 规则下的 BUG 排查与修复全记录

排查过程

  1. 简化逻辑
    ETL 流程过于庞大,首先需要花点时间简化 ETL,尽量最小化的复现出问题,利于排查。
    简化的方法:
  • 如果 ETL 执行时间较长,首先缩减数据集的大小,可以 limit 之后保存新的数据集,用新的数据集进行测试。
  • 从头尾往中间缩减逻辑,直到不能复现问题。头部的缩减可以保存临时数据集,然后使用临时数据集进行计算,尾部的则直接预览上一个步骤的结果。

简化后的逻辑是两个数据集,一张 A 表,有日期类型字段 a,一张 B 表,有日期类型字段 a,b,用 sql 表示为:

select  to_date(a) as a, to_date(b) as b from 
(select to_date(a) as a, to_date(A)  as b from 
(select to_date(a) as a from A group by to_date(a)) t1
union all 
select to_date(a) as a, to_date(b) as b from B group by to_date(a), to_date(b)) t2
group by  to_date(a), to_date(b)

当然 job engine 得到的是脚本文件,这里写成 sql 更加直观看出逻辑,通过查看脚本,确定 BI 生成的逻辑是正确的,那问题是出在了 engine 层。

  1. spark 本地复现排查
    本地复现
    将简化后的脚本转化为 spark 算子或者 spark sql,测试环境是 spark 3.2.1,在 spark 3.2.1 版本复现了该问题,本地复现后就便于去 debug 调试。
  test("test1") {
    val sqlText =
      """
        |select to_date(a) a, to_date(b) b from
        |(select  to_date(a) a, to_date(a) as b from
        |(select to_date(a) a from
        | values ('2020-02-01') as t1(a)
        | group by to_date(a)) t3
        |union all
        |select to_date(a) a, to_date(b) b from
        |(select to_date(a) a, to_date(b) b from
        |values ('2020-01-01','2020-01-02') as t1(a, b)
        | group by to_date(a), to_date(b)) t4) t5
        |group by to_date(a), to_date(b)
        |""".stripMargin
    spark.sql(sqlText).show()
  }

期待的结果:
Spark Optimizer 规则下的 BUG 排查与修复全记录
返回的结果:
Spark Optimizer 规则下的 BUG 排查与修复全记录

可以看出来,所有数据的 b 取了 a 的值,接下来就是查看 spark 执行计划。

执行计划

先简单介绍下 Spark Catalyst 优化器。
一条 SQL 语句生成执行引擎可识别的程序,就离不开解析(Parser)、优化(Optimizer)、执行(Execution) 这三大过程。 而 Catalyst 优化器在执行计划生成和优化的工作时候,它离不开自己内部的五大组件,如下所示:

  • Parser:将 sql 语句利用 Antlr4 进行词法和语法的解析;
  • Analyzer:主要利用 Catalog 信息将 Unresolved Logical Plan 解析成 Analyzed logical plan;
  • Optimizer:利用一些 Rule (规则)将 Analyzed logical plan 解析成 Optimized Logical Plan,规则很多,如常见的谓词下推 PushDownPredicate、列裁剪 ColumnPruning、常量替换 ConstantPropagation、常量累加 ConstantFolding 等;
  • Planner:前面的 logical plan 不能被 Spark 执行,而这个过程是把 logical plan 转换成多个 physical plans,然后利用代价模型(cost model)选择最佳的 physical plan;
  • Code Generation:这个过程会把 SQL 查询生成 Java 字 节码。

通过 explain(true) 方法可以拿到 sql 各阶段的执行计划,如下:


== Parsed Logical Plan ==
'Aggregate ['to_date('a), 'to_date('b)], ['to_date('a) AS a#7, 'to_date('b) AS b#8]
+- 'SubqueryAlias t5
   +- 'Union false, false
      :- 'Project ['to_date('a) AS a#1, 'to_date('a) AS b#2]
      :  +- 'SubqueryAlias t3
      :     +- 'Aggregate ['to_date('a)], ['to_date('a) AS a#0]
      :        +- 'SubqueryAlias t1
      :           +- 'UnresolvedInlineTable [a], [[2020-02-01]]
      +- 'Project ['to_date('a) AS a#5, 'to_date('b) AS b#6]
         +- 'SubqueryAlias t4
            +- 'Aggregate ['to_date('a), 'to_date('b)], ['to_date('a) AS a#3, 'to_date('b) AS b#4]
               +- 'SubqueryAlias t1
                  +- 'UnresolvedInlineTable [a, b], [[2020-01-01, 2020-01-02]]

== Analyzed Logical Plan ==
a: date, b: date
Aggregate [to_date(a#1, None), to_date(b#2, None)], [to_date(a#1, None) AS a#7, to_date(b#2, None) AS b#8]
+- SubqueryAlias t5
   +- Union false, false
      :- Project [to_date(a#0, None) AS a#1, to_date(a#0, None) AS b#2]
      :  +- SubqueryAlias t3
      :     +- Aggregate [to_date(a#9, None)], [to_date(a#9, None) AS a#0]
      :        +- SubqueryAlias t1
      :           +- LocalRelation [a#9]
      +- Project [to_date(a#3, None) AS a#5, to_date(b#4, None) AS b#6]
         +- SubqueryAlias t4
            +- Aggregate [to_date(a#10, None), to_date(b#11, None)], [to_date(a#10, None) AS a#3, to_date(b#11, None) AS b#4]
               +- SubqueryAlias t1
                  +- LocalRelation [a#10, b#11]

== Optimized Logical Plan ==
Aggregate [_groupingexpression#16, _groupingexpression#16], [_groupingexpression#16 AS a#7, _groupingexpression#16 AS b#8]
+- Union false, false
   :- Aggregate [_groupingexpression#16], [_groupingexpression#16, _groupingexpression#16]
   :  +- LocalRelation [_groupingexpression#16]
   +- Aggregate [_groupingexpression#17, _groupingexpression#18], [_groupingexpression#17, _groupingexpression#18]
      +- LocalRelation [_groupingexpression#17, _groupingexpression#18]

== Physical Plan ==
AdaptiveSparkPlan isFinalPlan=false
+- HashAggregate(keys=[_groupingexpression#16, _groupingexpression#16], functions=[], output=[a#7, b#8])
   +- Exchange hashpartitioning(_groupingexpression#16, _groupingexpression#16, 200), ENSURE_REQUIREMENTS, [id=#40]
      +- HashAggregate(keys=[_groupingexpression#16, _groupingexpression#16], functions=[], output=[_groupingexpression#16, _groupingexpression#16])
         +- Union
            :- HashAggregate(keys=[_groupingexpression#16], functions=[], output=[_groupingexpression#16, _groupingexpression#16])
            :  +- Exchange hashpartitioning(_groupingexpression#16, 200), ENSURE_REQUIREMENTS, [id=#33]
            :     +- HashAggregate(keys=[_groupingexpression#16], functions=[], output=[_groupingexpression#16])
            :        +- LocalTableScan [_groupingexpression#16]
            +- HashAggregate(keys=[_groupingexpression#17, _groupingexpression#18], functions=[], output=[_groupingexpression#17, _groupingexpression#18])
               +- Exchange hashpartitioning(_groupingexpression#17, _groupingexpression#18, 200), ENSURE_REQUIREMENTS, [id=#35]
                  +- HashAggregate(keys=[_groupingexpression#17, _groupingexpression#18], functions=[], output=[_groupingexpression#17, _groupingexpression#18])
                     +- LocalTableScan [_groupingexpression#17, _groupingexpression#18]

细看执行计划发现,Analyzed Logical Plan 是正常的,Optimized Logical Plan 明显有问题:
Aggregate [_groupingexpression#16, _groupingexpression#16], [_groupingexpression#16 AS a#7, _groupingexpression#16 AS b#8]

最外层的聚合结果 a,b 字段变成了相同的表达式_groupingexpression#16,问题出在了 optimizer 的表达式转化。

3.  尝试寻找捷径
optimizer 涉及的 rule 有大几十个,逐个了解排查太慢,先尝试能否找到捷径。
先分别在 spark 3.0.1、spark 3.2.2,spark master 分别测试,发现只有 spark 3.0.1 是正确的结果,其他版本均出现了错误的结果,说明这是 spark 3.0.1 后新引入的 bug,而且还未被修复。
然后通过 union、aggregate、attribute、alias 等关键字查找 spark 未解决的 issues,并未发现相同的 bug,寻找捷径失败,提 issue 到社区,然后得继续分析。
issue 地址:issues.apache.org/jira/browse…

4.  分析 optimizer rules
optimizer 中,通过排除发现启用 PushProjectionThroughUnion、CollapseProject、SimplifyCasts、RemoveRedundantAliases 这四个规则会触发 bug。通过本地 debug,可以看到每个规则执行后得到的新的逻辑计划树。

Aggregate [_groupingexpression#14, _groupingexpression#15], [_groupingexpression#14 AS a#7, _groupingexpression#15 AS b#8]
+- Project [a#1, b#2, cast(a#1 as date) AS _groupingexpression#14, cast(b#2 as date) AS _groupingexpression#15]
   +- Union false, false
      :- Project [cast(a#0 as date) AS a#1, cast(a#0 as date) AS b#2]
      :  +- Aggregate [_groupingexpression#16], [_groupingexpression#16 AS a#0]
      :     +- Project [a#9, cast(a#9 as date) AS _groupingexpression#16]
      :        +- LocalRelation [a#9]
      +- Project [cast(a#3 as date) AS a#5, cast(b#4 as date) AS b#6]
         +- Aggregate [_groupingexpression#17, _groupingexpression#18], [_groupingexpression#17 AS a#3, _groupingexpression#18 AS b#4]
            +- Project [a#10, b#11, cast(a#10 as date) AS _groupingexpression#17, cast(b#11 as date) AS _groupingexpression#18]
               +- LocalRelation [a#10, b#11]

PushProjectionThroughUnion 前

Aggregate [_groupingexpression#14, _groupingexpression#15], [_groupingexpression#14 AS a#7, _groupingexpression#15 AS b#8]
+- Union false, false
   :- Project [a#1, b#2, cast(a#1 as date) AS _groupingexpression#14, cast(b#2 as date) AS _groupingexpression#15]
   :  +- Project [cast(a#0 as date) AS a#1, cast(a#0 as date) AS b#2]
   :     +- Aggregate [_groupingexpression#16], [_groupingexpression#16 AS a#0]
   :        +- Project [a#9, cast(a#9 as date) AS _groupingexpression#16]
   :           +- LocalRelation [a#9]
   +- Project [a#5, b#6, cast(a#5 as date) AS _groupingexpression#19, cast(b#6 as date) AS _groupingexpression#20]
      +- Project [cast(a#3 as date) AS a#5, cast(b#4 as date) AS b#6]
         +- Aggregate [_groupingexpression#17, _groupingexpression#18], [_groupingexpression#17 AS a#3, _groupingexpression#18 AS b#4]
            +- Project [a#10, b#11, cast(a#10 as date) AS _groupingexpression#17, cast(b#11 as date) AS _groupingexpression#18]
               +- LocalRelation [a#10, b#11]

PushProjectionThroughUnion 后

Aggregate [_groupingexpression#14, _groupingexpression#15], [_groupingexpression#14 AS a#7, _groupingexpression#15 AS b#8]
+- Union false, false
   :- Aggregate [_groupingexpression#16], [cast(_groupingexpression#16 as date) AS a#1, cast(_groupingexpression#16 as date) AS b#2, cast(cast(_groupingexpression#16 as date) as date) AS _groupingexpression#14, cast(cast(_groupingexpression#16 as date) as date) AS _groupingexpression#15]
   :  +- Project [a#9, cast(a#9 as date) AS _groupingexpression#16]
   :     +- LocalRelation [a#9]
   +- Aggregate [_groupingexpression#17, _groupingexpression#18], [cast(_groupingexpression#17 as date) AS a#5, cast(_groupingexpression#18 as date) AS b#6, cast(cast(_groupingexpression#17 as date) as date) AS _groupingexpression#19, cast(cast(_groupingexpression#18 as date) as date) AS _groupingexpression#20]
      +- Project [a#10, b#11, cast(a#10 as date) AS _groupingexpression#17, cast(b#11 as date) AS _groupingexpression#18]
         +- LocalRelation [a#10, b#11]

CollapseProject 后

Aggregate [_groupingexpression#14, _groupingexpression#15], [_groupingexpression#14 AS a#7, _groupingexpression#15 AS b#8]
+- Union false, false
   :- Aggregate [_groupingexpression#16], [_groupingexpression#16 AS a#1, _groupingexpression#16 AS b#2, cast(_groupingexpression#16 as date) AS _groupingexpression#14, cast(_groupingexpression#16 as date) AS _groupingexpression#15]
   :  +- Project [a#9, cast(a#9 as date) AS _groupingexpression#16]
   :     +- LocalRelation [a#9]
   +- Aggregate [_groupingexpression#17, _groupingexpression#18], [_groupingexpression#17 AS a#5, _groupingexpression#18 AS b#6, cast(_groupingexpression#17 as date) AS _groupingexpression#19, cast(_groupingexpression#18 as date) AS _groupingexpression#20]
      +- Project [a#10, b#11, cast(a#10 as date) AS _groupingexpression#17, cast(b#11 as date) AS _groupingexpression#18]
         +- LocalRelation [a#10, b#11]

SimplifyCasts 后

Aggregate [_groupingexpression#14, _groupingexpression#15], [_groupingexpression#14 AS a#7, _groupingexpression#15 AS b#8]
+- Union false, false
   :- Aggregate [_groupingexpression#16], [_groupingexpression#16 AS a#1, _groupingexpression#16 AS b#2, cast(_groupingexpression#16 as date) AS _groupingexpression#14, cast(_groupingexpression#16 as date) AS _groupingexpression#15]
   :  +- Project [a#9, cast(a#9 as date) AS _groupingexpression#16]
   :     +- LocalRelation [a#9]
   +- Aggregate [_groupingexpression#17, _groupingexpression#18], [_groupingexpression#17 AS a#5, _groupingexpression#18 AS b#6, cast(_groupingexpression#17 as date) AS _groupingexpression#19, cast(_groupingexpression#18 as date) AS _groupingexpression#20]
      +- Project [a#10, b#11, cast(a#10 as date) AS _groupingexpression#17, cast(b#11 as date) AS _groupingexpression#18]
         +- LocalRelation [a#10, b#11]

RemoveRedundantAliases 后

结合源码,了解到每个 rule 的作用:

  • PushProjectionThroughUnion:将 Project 运算符推送到 Union all 运算符的两侧;
  • CollapseProject:将两个 Project 运算符合二为一并执行别名替换,在以下情况下将表达式合并为一个表达式:1. 当两个项目操作员相邻时;2. 当两个 Project 算子之间有 LocalLimit/Sample/Repartition 算子并且上层 project 由相同数量的列组成,相等或有别名;
  • SimplifyCasts:删除不必要的强制转换,因为输入已经是正确的类型;
  • RemoveRedundantAliases:从查询计划中删除多余的别名。冗余别名是不会更改列的名称或元数据。

前三个是为了简化执行计划,以及给其他优化包括 RemoveRedundantAliases 做准备工作,重点在于 RemoveRedundantAliases 和 Union.output,Union.output 重用了第一个孩子的输出,但显然 Union 和它的第一个孩子输出不同的值。RemoveRedundantAliases 会将 Union 删除别名,包括这种情况 Union(Project(a#1, a#1 as a#2, ...), ...),从而引发了错误。

5.  修复 bug
知道了原因,那就开始修复,我的处理是对 union 的第一个 child 不做 RemoveRedundantAliases 操作,修复了问题:

case _: Union =>
        var first = true
        plan.mapChildren { child =>
          if (first) {
            first = false
            removeRedundantAliases(child, excluded ++ child.outputSet)
          } else {
            removeRedundantAliases(child, excluded)
          }
        }

但是当 union 的第一个 child 中不包含冲突的 attribute 时,则会影响第一个 child 的 RemoveRedundantAliases 优化,稍微影响些性能,不会影响功能。针对该问题,社区大佬正在解决中:https://github.com/apache/spa...。

总结

本文主要介绍了 Spark Optimizer 规则 RemoveRedundantAliases 引发的 Bug 的排查修复全过程,主要几步走,第一步简化逻辑,便于排查;第二步,本地复现,确定是 spark 自身的 bug,大致定位出问题所属模块;第三步尝试寻找捷径;如第三部失败进行第四步,深入分析,修复 bug。

版权声明:程序员胖胖胖虎阿 发表于 2022年11月9日 下午8:56。
转载请注明:Spark Optimizer 规则下的 BUG 排查与修复全记录 | 胖虎的工具箱-编程导航

相关文章

暂无评论

暂无评论...