YOLOAir|面向小白的目标检测库,更快更方便更完整的YOLO库

YOLOAir 算法代码库是一个基于 PyTorch 的 YOLO 系列目标检测开源工具箱。使用统一模型代码框架、统一应用方式、统一调参,该库包含大量的改进模块,可使用不同网络模块来快速构建不同网络的检测模型。基于 YOLOv5 代码框架,并同步适配 YOLOv5(v6.0/v6.1 更新) 部署生态。用户在使用这个项目之前, 可以先了解 YOLOv5 库。

YOLOAir|面向小白的目标检测库,更快更方便更完整的YOLO库

YOLOAir算法库 是一个基于 PyTorch 的一系列 YOLO 检测算法组合工具箱。用来组合不同模块构建不同网络。该项目的宗旨是让改进YOLO结构更快、更方便。希望YOLOAir能够在工程和科研帮大家解决一些难题,项目持续维护中,有问题可以在欢迎大家在issue中提问,另外如果大家希望在YOLOAir中加入更多的代码,也欢迎联系作者或者在issue中提出。开源工作不易,希望大家能够能个star支持一下呀~

该项目包含大量的改进方式,改进点包含 Backbone、Neck、Head、注意力机制、IoU 损失函数、多种 NMS、Loss 损失函数、自注意力机制系列、数据增强部分、激活函数等部分,更多内容可以关注 YOLOAir 项目的说明文档。\
项目同时附带各种改进点原理及对应的代码改进方式教程,用户可根据自身情况快速排列组合,在不同的数据集上实验, 应用组合改进点写论文!\
模块组件化:帮助用户自定义快速组合 Backbone、Neck、Head,使得网络模型多样化,使得改进检测算法、工程算法部署落地更便捷,构建更强大的网络模型。\
支持YOLOv5、YOLOv7、YOLOX、YOLOR、YOLOv3、YOLOv4、Scaled_YOLOv4、Transformer等算法网络模型进行改进。

YOLOAir|面向小白的目标检测库,更快更方便更完整的YOLO库

项目地址:  https://github.com/iscyy/yoloair

项目介绍

主要特性

持续支持更多的 YOLO 系列模型模块,作者对可以进行改进的部分进行了分类:
支持更多 Backbone

  • CSPDarkNet 系列
  • ResNet 系列
  • RegNet 系列
  • RepBlock 系列
  • ShuffleNet 系列
  • Ghost 系列
  • MobileNet 系列
  • ConvNext 系列
  • RepLKNet 系列
  • EfficientNet系列
  • CNN 和 Transformer:BoTNet、CoTNet、Acmix等
  • 自注意力机制:Transformer、Swin等

支持更多 Neck

  • neck 包含 FPN、PANet、BiFPN 等主流结构,同时可以添加和替换任何模块

支持更多检测头 Head

  • YOLOv5 Head 检测头
  • YOLOX 的解耦合检测头 Decoupled Head
  • 自适应空间特征融合检测头 ASFF Head
  • YOLOv7 检测头 IDetect Head、IAuxDetect Head 等

支持更多即插即用的注意力机制

  • 在网络任何部分即插即用式使用注意力机制, 内置多种主流注意力机制
  • Self Attention
  • Contextual Transformer
  • Bottleneck Transformer
  • S2-MLP Attention
  • SK Attention
  • CBAM Attention
  • SE Attention
  • Coordinate attention
  • BAM Attention
  • GAM attention
  • ECA Attention
  • Shuffle Attention
  • DANet Attention
  • 持续更新中

支持更多损失函数

  • 内置CIoU、DIoU、GIoU、EIoU、SIoU、alpha IOU 等损失函数,持续更新

支持更多 NMS

  • 内置NMS、Merge-NMS、DIoU-NMS、Soft-NMS、CIoU-NMS、DIoU-NMS、GIoU-NMS、EIoU-NMS、SIoU-NMS、Soft-SIoUNMS、Soft-CIoUNMS、Soft-DIoUNMS、Soft-EIoUNMS、Soft-GIoUNMS 等持续更新中

支持更多数据增强

  • Mosaic、Copy paste、Random affine(Rotation, Scale, Translation and Shear)、MixUp、Augment HSV(Hue, Saturation, Value,Random horizontal flip)

支持更多 Loss

  • ComputeLoss、ComputeNWDLoss、ComputeLoss(X)、ComputeLoss(v6)、ComputeLossAuxOTA(v7)、ComputeLossOTA(v7) 等 
  • 支持 Anchor-base 检测器和 Anchor-Free 检测器

内置多种网络模型模块化组件

  • Conv, GhostConv, Bottleneck, Transformer, Swin Transformer, CoTNet transformer, BoTNet transformer, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, DWT, BottleneckCSP2, VoVCSP...等详情看项目内容

以上组件模块使用统一模型代码框架、统一任务形式、统一应用方式,模块组件化可以帮助用户自定义快速组合 Backbone、Neck、Head,使得网络模型多样化,助力科研改进检测算法,构建更强大的网络模型。

内置改进网络模型配置支持

包括基于 YOLOv5 的几十种改进网络结构等算法模型的 yaml 配置文件汇总,使用 YOLOv5 网络作为示范,可以将这些模块无缝加入到 YOLOv7、YOLOX、YOLOR、YOLOv4、Scaled_YOLOv4、YOLOv3 等系列 YOLO 算法模块。

YOLOAir 算法库汇总了多种主流 YOLO 系列检测模型的模块,一套代码汇集多种模型结构:

  • 内置 YOLOv5 模型网络结构
  • 内置 YOLOv7 模型网络结构
  • 内置 YOLOX 模型网络结构
  • 内置 YOLOR 模型网络结构
  • 内置 Scaled_YOLOv4 模型网络结构
  • 内置 YOLOv4 模型网络结构
  • 内置 YOLOv3 模型网络结构
  • TPH-YOLO 模型网络结构
  • YOLOv5Lite 模型网络结构
  • YOLO-FaceV2 模型网络结构
  • PicoDet 模型网络结构
  • 以及其他部分改进模型网络结构

\
以上多种检测算法网络模型使用统一代码框架,集成在 YOLOAir 代码库中,统一应用方式。便于科研者用于论文算法模型改进,模型对比,实现网络组合多样化,包含轻量化模型和精度更高的模型,根据场景合理选择,在精度和速度者两个方面取得平衡。同时该库支持解耦不同的结构和模块组件,让模块组件化,通过组合不同的模块组件,用户可以根据不同数据集或不同业务场景自行定制化构建不同检测模型。

使用
代码遵循 YOLOv5 设计原则,使用方式基本和 YOLOv5 框架对齐。
与 YOLOv5 框架同步。

安装
在 Python>=3.7.0 的环境中克隆版本仓并安装 requirements.txt,包括 PyTorch>=1.7。

$ git clone https://github.com/iscyy/yoloair.git  # 克隆$ cd yoloair
$ pip install -r requirements.txt  # 安装

训练

$ python train.py --data coco128.yaml --cfg configs/yolov5/yolov5s.yaml

融合
如果使用不同的模型推理数据集,可以使用 wbf 文件通过加权框融合来集成结果。在 wbf 文件中设置 img 路径和 txt 路径。

$ python tools/wbf.py

YOLO网络模型具体改进方式教程及原理参考

  • 9.改进YOLOv5系列:9.BoTNet Transformer结构的修改
  • 8.改进YOLOv5系列:8.增加ACmix结构的修改,自注意力和卷积集成
  • 7.改进YOLOv5系列:7.修改DIoU-NMS,SIoU-NMS,EIoU-NMS,CIoU-NMS,GIoU-NMS
  • 6.改进YOLOv5系列:6.修改Soft-NMS,Soft-CIoUNMS,Soft-SIoUNMS
  • 5.改进YOLOv5系列:5.CotNet Transformer结构的修改
  • 4.改进YOLOv5系列:4.YOLOv5_最新MobileOne结构换Backbone修改
  • 3.改进YOLOv5系列:3.Swin Transformer结构的修改
  • 2.改进YOLOv5系列:2.PicoDet结构的修改
  • 1.改进YOLOv5系列:1.YOLOv5_CBAM注意力机制修改(其他注意力机制同理)

YOLO网络模型具体改进方式教程及原理参考

改进教程演示持续更新中,详情见GitHub

YOLOAir|面向小白的目标检测库,更快更方便更完整的YOLO库


已建立深度学习公众号——FightingCV,关注于最新论文解读、基础知识巩固、科技新闻速递,欢迎大家关注!!!

FightingCV交流群里每日会发送论文解析,进行学术交流,加群请添加小助手wx:FightngCV666,备注:地区-学校(公司)-名称

面向小白的顶会论文核心代码学习:https://github.com/xmu-xiaoma...

本文由mdnice多平台发布

相关文章

暂无评论

暂无评论...