什么时候进行分库分表 ?

2年前 (2022) 程序员胖胖胖虎阿
263 0 0
点击上方
蓝色字体
,选择“标星公众号”

优质文章,第一时间送达



什么时候进行分库分表 ?

作者 | 尜尜人物

链接 | cnblogs.com/littlecharacter/p/9342129.html

一、数据库瓶颈

不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。

在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。

1、IO瓶颈

第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。

第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。

2、CPU瓶颈

第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。

第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。

二、分库分表

1、水平分库

什么时候进行分库分表 ?

1.概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。

2.结果:

  • 每个库的结构都一样;

  • 每个库的数据都不一样,没有交集;

  • 所有库的并集是全量数据;

3.场景:
系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。
4.分析:
库多了,io和cpu的压力自然可以成倍缓解。

2、水平分表

什么时候进行分库分表 ?
1.概念:
以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。
2.结果:

  • 每个表的结构都一样

  • 每个表的数据都不一样,没有交集;

  • 所有表的并集是全量数据;

3.场景:
系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。推荐阅读:MySQL全面优化,速度飞起来。
4.分析:
表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。

3、垂直分库

什么时候进行分库分表 ?
1.概念:
以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。
2.结果:

  • 每个库的结构都不一样;

  • 每个库的数据也不一样,没有交集;

  • 所有库的并集是全量数据;

3.场景:
系统绝对并发量上来了,并且可以抽象出单独的业务模块。4.分析:到这一步,基本上就可以服务化了。
例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。
再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。

4、垂直分表

什么时候进行分库分表 ?
1.概念:
以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。
2.结果:

  • 每个表的结构都不一样;

  • 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;

  • 所有表的并集是全量数据;

3.场景:
系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。
4.分析:
可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。
这样更多的热点数据就能被缓存下来,进而减少了随机读IO。
拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。

三、分库分表工具

  1. sharding-sphere:
    jar,前身是sharding-jdbc;
  2. TDDL:
    jar,Taobao Distribute Data Layer;
  3. Mycat:
    中间件。
注:
工具的利弊,请自行调研,官网和社区优先。

四、分库分表步骤

根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。

五、分库分表问题

1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)

  1. 端上除了partition key只有一个非partition key作为条件查询

  • 映射法

什么时候进行分库分表 ?
  • 基因法

什么时候进行分库分表 ?
注:
写入时,基因法生成userid,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据userid查询时可直接取模路由到对应的分库或分表。
根据username查询时,先通过usernamecode生成函数生成username_code再对其取模路由到对应的分库或分表。
id生成常用snowflake算法。
  1. 端上除了partition key不止一个非partition key作为条件查询

  • 映射法

什么时候进行分库分表 ?
  • 冗余法

什么时候进行分库分表 ?
注:
按照orderid或buyerid查询时路由到dbobuyer库中,按照sellerid查询时路由到dbo_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢?
  1. 后台除了partition key还有各种非partition key组合条件查询

  • NoSQL法

什么时候进行分库分表 ?
  • 冗余法

什么时候进行分库分表 ?

2、非partition key跨库跨表分页查询问题(水平分库分表,拆分策略为常用的hash法)

注:
用NoSQL法解决(ES等)。

3、扩容问题(水平分库分表,拆分策略为常用的hash法)

1.水平扩容库(升级从库法)


什么时候进行分库分表 ?
注:
扩容是成倍的。


2.水平扩容表(双写迁移法)  

什么时候进行分库分表 ?

第一步:
(同步双写)应用配置双写,部署;第二步:(同步双写)将老库中的老数据复制到新库中;第三步:(同步双写)以老库为准校对新库中的老数据;第四步:(同步双写)应用去掉双写,部署;

注:
双写是通用方案。

六、分库分表总结

  1. 分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?
    水平还是垂直?分几个?)。且不可为了分库分表而拆分。
  2. 选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。

  3. 只要能满足需求,拆分规则越简单越好。

七、分库分表示例

示例GitHub址: 

https://github.com/LiHaodong888/SpringBootLear

如果喜欢本篇文章,欢迎转发、点赞。关注订阅号「Web项目聚集地」,回复「全栈」即可获取 2019 年最新 Java、Python、前端学习视频资源。


推荐阅读

1. 这代码写的,狗屎一样 

2. 这代码写的,狗屎一样 (下)

3. 除了负载均衡,Nginx 还可以做很多

4. 快来薅当当的羊毛 !

5. 聊一聊 Java 泛型中的通配符

6. 数据库不使用外键的 9 个理由

什么时候进行分库分表 ?
喜欢文章,点个
在看
 
什么时候进行分库分表 ?

本文分享自微信公众号 - Java后端(web_resource)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

版权声明:程序员胖胖胖虎阿 发表于 2022年9月6日 下午11:08。
转载请注明:什么时候进行分库分表 ? | 胖虎的工具箱-编程导航

相关文章

暂无评论

暂无评论...