mysql索引的数据结构

2年前 (2022) 程序员胖胖胖虎阿
366 0 0

为什么使用索引

mysql索引的数据结构

我们假如不使用索引的话,就像我们左边的这样,造成全文索引
加入索引的话,像我们右边的这样,那么它的速度就会快上很多。

打个比方,假如我们需要查字典的话,索引就像我们的目录一样,没有索引,我们就只能一页一页去找。而加上索引之后,我们可以根据目录来快速查找我们所需要的东西

mysql索引的数据结构

对字段Col2添加了索引,就相当于在硬盘上为col 2维护了一个索引的数据结构,即这个二叉搜索树。二叉搜索树的每个结点存储的是(K,V)结构,key是Col 2,value是该key所在行的文件指针(地址)。比如:该二叉搜索树的根节点就是:(34,0x07)。现在对Ccol2添加了索引,这时再去查找Col 2=89这条记录的时候会先去查找该二叉搜索树(二叉树的遍历查找)。读34到内存,89>34;继续右侧数据,读s9到内存,89 ==- 89;找到数据返回。找到之后就根据当前结点的value快速定位到要查找的记录对应的地址。我们可以发现,只需要查找两次就可以定位到记录的地址,查询速度就提高了。

这就是我们为什么要建索引,目的就是为了减少磁盘 I/O 的次数,加快查询速率。

索引及其优缺点

索引概述

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构
索引的本质:索引是数据结构。你可以简单理解为“排好序的快速查找数据结构”,满足特定查找算法。这些数据结构以某种方式指向数据, 这样就可以在这些数据结构的基础上实现 高级查找算法

优点:

(1)类似大学图书馆建书目索引,提高数据检索的效率,降低 数据库的IO成本 ,这也是创建索引最主要的原因。
(2)通过创建唯一索引,可以保证数据库表中每一行 数据的唯一性
(3)在实现数据的参考完整性方面,可以 加速表和表之间的连接。换句话说,对于有依赖关系的子表和父表联合查询时,可以提高查询速度
(4)在使用分组和排序子句进行数据查询时,可以显著 减少查询中分组和排序的时间 ,降低了CPU的消耗

缺点:

(1)创建索引和维护索引要 耗费时间 ,并且随着数据量的增加,所耗费的时间也会增加。
(2)索引需要占 磁盘空间 ,除了数据表占数据空间之外,每一个索引还要占一定的物理空间, 存储在磁盘上 ,如果有大量的索引,索引文件就可能比数据文件更快达到最大文件尺寸。
(3)虽然索引大大提高了查询速度,同时却会 降低更新表的速度 。当对表中的数据进行增加、删除和修改的时候,索引也要动态地维护,这样就降低了数据的维护速度。

提示:
索引可以提高查询的速度,但是会影响插入记录的速度。这种情况下,最好的办法是先删除表中的索引,然后插入数据,插入完成后再创建索引。

需要注意的是:索引是在具体的存储引擎中实现的,不同的存储引擎,索引的数据结构就有可能不一样。

InnoDB中的索引

mysql索引的数据结构

这个数据结构,就是我们的B+树

B+Tree

不论是存放用户记录的数据页,还是存放目录项记录的数据页,我们都把它们存放到B+树这个数据结构中了,所以我们也称这些数据页为节点。从图中可以看出,我们的实际用户记录其实都存放在B+树的最底层的节点上,这些节点也被称为叶子节点,其余用来存放目录项的节点称为非叶子节点或者内节点,其中B+树最上边的那个节点也称为根节点。

为什么说我们用到的B+树都不会超过四层呢???

在 MySQL 中我们的 InnoDB 页的大小默认是 16kb。
假设所有存放用户记录的叶子节点代表的数据页可以存放100条用户记录,相当于一条数据占160字节,所有存放目录项记录的内节点代表的数据页可以存放1000条目录项记录(因为目录页的字段没有叶子结点的字段多,所以一般可以多存储一点) ,那么:

  • 如果B+树只有1层,也就是只有1个用于存放用户记录的节点,最多能存放 100 条记录
  • 如果B+树有2层,最多能存放 1000×100=10,0000 条记录。
  • 如果B+树有3层,最多能存放 1000×1000×100=1,0000,0000 条记录。
  • 如果B+树有4层,最多能存放 1000×1000×1000×100=1000,0000,0000 条记录。相当多的记录!!!

你的表里能存放一千万条记录吗??所以一般情况下,我们 用到的B+树都不会超过4层 ,那我们通过主键值去查找某条记录最多只需要做4个页面内的查找(查找3个目录项页和一个用户记录页),又因为在每个页面内有所谓的 Page Directory(页目录),所以在页面内也可以通过 二分法 实现快速定位记录。

常见索引概念

索引按照物理实现方式,索引可以分为 2 种:聚簇(聚集)和非聚簇(非聚集)索引。我们也把非聚集索引称为二级索引或者辅助索引。

聚簇索引

mysql索引的数据结构

聚簇索引并不是一种单独的索引类型,而是一种数据存储方式(所有的用户记录都存储在了叶子节点),也就是所谓的索引即数据,数据即索引

术语"聚簇"表示数据行和相邻的键值聚簇的存储在一起。

特点:

  • 使用记录主键值的大小进行记录和页的排序,这包括三个方面的含义:
    页内 的记录是按照主键的大小顺序排成一个 单向链表。
    各个存放 用户记录的页 也是根据页中用户记录的主键大小顺序排成一个 双向链表 。
    存放目录项记录的页 分为不同的层次,在同一层次中的页也是根据页中目录项记录的主键大小顺序排成一个 双向链表。
  • B+树的 叶子节点 存储的是完整的用户记录。
    所谓完整的用户记录,就是指这个记录中存储了所有列的值(包括隐藏列)。

我们把具有这两种特性的B+树称为聚簇索引,所有完整的用户记录都存放在这个聚簇索引的叶子节点处。这种聚簇索引并不需要我们在MysQL语句中显式的使用INDEX语句去创建,InnoDB存储引擎会自动的为我们创建聚簇索引。

优点:

  • 数据访问更快 ,因为聚簇索引将索引和数据保存在同一个B+树中,因此从聚簇索引中获取数据比非聚簇索引更快
  • 聚簇索引对于主键的 排序查找 和 范围查找 速度非常快
  • 按照聚簇索引排列顺序,查询显示一定范围数据的时候,由于数据都是紧密相连,数据库不用从多个数据块中提取数据,所以 节省了大量的io操作

缺点:

  • 插入速度严重依赖于插入顺序 ,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于InnoDB表,我们一般都会定义一个自增的ID列为主键
  • 更新主键的代价很高 ,因为将会导致被更新的行移动。因此,对于InnoDB表,我们一般定义主键为不可更新
  • 二级索引访问需要两次索引查找 ,第一次找到主键值,第二次根据主键值找到行数据

限制:

  • 对于MySQL数据库目前只有InnoDB数据引擎支持聚簇索引,而MylSAM并不支持聚簇索引。
  • 由于数据物理存储排序方式只能有一种,所以每个MySQL的表只能有一个聚簇索引。一般情况下就是该表的主键。
  • 如果没有定义主键,Innodb会选择非空的唯一索引代替。如果没有这样的索引,Innodb会隐式的定义一个主键来作为聚簇索引。
  • 为了充分利用聚簇索引的聚簇的特性,所以innodb表的主键列尽量选用有序的顺序id,而不建议用无序的id,比如UUID、MD5、HASH、字符串列作为主键无法保证数据的顺序增长。

二级索引(辅助索引、非聚簇索引)

上边介绍的聚簇索引只能在搜索条件是主键值时才能发挥作用,因为B+树中的数据都是按照主键进行排序的。那如果我们想以别的列作为搜索条件该怎么办呢?肯定不能是从头到尾沿着链表依次遍历记录一遍。

答案:我们可以多建几棵B+树,不同的B+树中的数据采用不同的排序规则。比方说我们用c2列的大小作为数据页、页中记录的排序规则,再建一棵B+树,效果如下图所示:

mysql索引的数据结构

现在我们查找从c2为4(c2为非主键)的记录,先从顶部开始找,最后找到页34,页35,如下图:

mysql索引的数据结构

现在我们知道了c2==4的三条记录,但是字段只有c1,c2,我们要查找到它的全部记录,就需要把c1字段的值拿去聚簇索引里面查找,这个过程就叫做回表

回表

我们根据这个以c2列大小排序的B+树只能确定我们要查找记录的主键值,所以如果我们想根据c2列的值查找到完整的用户记录的话,仍然需要到聚簇索引中再查一遍,这个过程称为回表。也就是根据c2列的值查询一条完整的用户记录需要使用到2棵B+树!|

问题:为什么我们还需要一次回表操作呢?直接把完整的用户记录放到叶子节点不OK吗?

如果把完整的用户记录放到叶子节点是可以不用回表。但是太占地方了,相当于每建立一棵B+树都需要把所有的用户记录再都拷贝一遍,这就有点太浪费存储空间了。
我们一个表中只能有一个聚簇索引,而可以有多个二级索引,这样的话我们有多个二级索引时,还需要多复制几遍所有的用户记录,占得位置大

因为这种按照非主键列建立的B+树需要一次回表操作才可以定位到完整的用户记录,所以这种B+树也被称为二级索引(英文名secondary index ),或者辅助索引。由于我们使用的是c2列的大小作为B+树的排序规则,所以我们也称这个B+树是为c2列建立的索引。

非聚簇索引的存在不影响数据在聚簇索引中的组织,所以一张表可以有多个非聚簇索引。
mysql索引的数据结构
小结:聚簇索引与非聚簇索引的原理不同,在使用上也有一些区别:

  • 1.聚簇索引的叶子节点存储的就是我们的数据记录,非聚簇索引的叶子节点存储的是数据位置。非聚簇索引不会影响数据表的物理存储顺序。
  • 2.一个表只能有一个聚簇索引,因为只能有一种排序存储的方式,但可以有多个非聚簇索引,也就是多个索引目录提供数据检索。
  • 3.使用聚簇索引的时候,数据的查询效率高,但如果对数据进行插入,删除,更新等操作,效率会比非聚簇索引低(这里暂时不太清楚)。

联合索引

我们也可以同时以多个列的大小作为排序规则,也就是同时为多个列建立索引,比方说我们想让B+树按照 c2和c3列 的大小进行排序,这个包含两层含义:

  • 先把各个记录和页按照c2列进行排序。.
  • 在记录的c2列相同的情况下,采用c3列进行排序
    mysql索引的数据结构

注意一点,以c2和c3列的大小为排序规则建立的B+树称为 联合索引 ,本质上也是一个二级索引。它的意思与分别为c2和c3列分别建立索引的表述是不同的,不同点如下:

  • 建立 联合索引 只会建立如上图一样的1棵B+树。
  • 为c2和c3列分别建立索引会分别以c2和c3列的大小为排序规则建立2棵B+树。

InnoDB的B+树索引的注意事项

  1. 根页面位置万年不动
    我们前边介绍B+树索引的时候,为了大家理解上的方便,先把存储用户记录的叶子节点都画出来,然后接着画存储目录项记录的内节点,实际上B+树的形成过程是这样的:
    1.每当为某个表创建一个B+树索引(聚簇索引不是人为创建的,默认就有)的时候,都会为这个索引创建一个根节点页面。最开始表中没有数据的时候,每个B+树索引对应的根节点中既没有用户记录,也没有目录项记录
    2.随后向表中插入用户记录时,先把用户记录存储到这个根节点中。
    3.当根节点中的可用空间用完时继续插入记录,此时会将根节点中的所有记录复制到一个新分配的页,比如页a中,然后对这个新页进行页分裂的操作,得到另一个新页,比如页b。这时新插入的记录根据键值(也就是聚簇索引中的主键值,二级索引中对应的索引列的值)的大小就会被分配到页a或者b中,而根节点便升级为存储目录项记录的页。
    这个过程特别注意的是:一个B+树索引的根节点自诞生之日起,便不会再移动。这样只要我们对某个表建立一个索引,那么它的根节点的页号便会被记录到某个地方,然后凡是InnoDB存储引擎需要用到这个索引的时候,都会从那个固定的地方取出根节点的页号,从而来访问这个索引。
  2. 内节点中目录项记录的唯一性
    我们知道B+树索引的内节点中目录项记录的内容是索引列+页号的搭配,但是这个搭配对于二级索引来说有点儿不严谨。还拿index_demo表为例,假设这个表中的数据是这样的:
    mysql索引的数据结构
    如果二级索引中目录项记录的内容只是索引列+页号的搭配的话,那么为c2列建立索引后的B+树应该长这样:
    mysql索引的数据结构
    如果我们想新插入一行记录,其中c1、c2、c3的值分别是:9、1、 ‘c’,那么在修改这个为c2列建立的二级索引对应的B+树时便碰到了个大问题:由于页3中存储的目录项记录是由c2列+页号的值构成的,页3中的两条目录项记录对应的c2列的值都是1,而我们新插入的这条记录的c2列的值也是1,那我们这条新插入的记录到底应该放到页4中,还是应该放到页5中啊?答案是:对不起,懵了。
    为了让新插入记录能找到自己在那个页里,我们需要保证在B+树的同一层内节点的目录项记录除页号这个字段以外是唯一的。所以对于二级索引的内节点的目录项记录的内容实际上是由三个部分构成的:
    索引列
    主键值
    页号
    也就是我们把主键值也添加到二级索引内节点中的目录项记录了,这样就能保证B+树每一层节点中各条目录项记录除页号这个字段外是唯一的,所以我们为c2列建立二级索引后的示意图实际上应该是这样子的:
    mysql索引的数据结构
    这样我们再插入记录(9,1, ‘c’)时,由于页3中存储的目录项记录是由c2列+主键+页号的值构成的,可以先把新记录的c2列的值和页3中各目录项记录的c2列的值作比较,如果c2列的值相同的话,可以接着比较主键值,因为B+树同一层中不同目录项记录的c2列+主键的值肯定是不一样的,所以最后肯定能定位唯一的一条目录项记录,在本例中最后确定新记录应该被插入到页5中。(所以我们的二级索引在目录节点时,也有保存其主键值)
  3. 一个页面最少存储2条记录
    一个B+树只需要很少的层级就可以轻松存储数亿条记录,查询速度相当不错!这是因为B+树本质上就是一个大的多层级目录,每经过一个目录时都会过滤掉许多无效的子目录,直到最后访问到存储真实数据的目录。那如果一个大的目录中只存放一个子目录是个啥效果呢?那就是目录层级非常非常非常多,而且最后的那个存放真实数据的目录中只能存放一条记录。费了半天劲只能存放一条真实的用户记录?所以InnoDB的一个数据页至少可以存放两条记录。

MyLSAM中的索引方案

我们知道InnoDB中索引即数据,也就是聚簇索引的那棵B+树的叶子节点中已经把所有完整的用户记录都包含了,而MyISAM的索引方案虽然也使用树形结构,但是却将索引和数据分开存储:

  • 将表中的记录按照记录的插入顺序单独存储在一个文件中,称之为数据文件。这个文件并不划分为若干个数据页,有多少记录就往这个文件中塞多少记录就成了。由于在插入数据的时候并没有刻意按照主键大小排序,所以我们并不能在这些数据上使用二分法进行查找。
  • 使用”MyISAN存储引擎的表会把索引信息另外存储到一个称为索引文件的另一个文件中。MyISAM会单独为表的主键创建一个索引,只不过在索引的叶子节点中存储的不是完整的用户记录,而是主键值+数据记录地址的组合。
    mysql索引的数据结构
    这里设表一共有三列,假设我们以col1为主键,上图是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主键索引和二级索引 (Secondary key)在结构上没有任何区别,只是主键索引要求key是唯一的,而二级索引的key可以重复。如果我们在col2上建立一个二级索引,则此索引的结构如下图所示:
    mysql索引的数据结构
    同样也是一棵B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为:首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。

MylSAM与InnoDB对比

MyISAM的索引方式都是“非聚簇”的,与InnoDB包含1个聚簇索引是不同的。小结两种引擎中索引的区别:

  1. 在InnoDB存储引擎中,我们只需要根据主键值对聚簇索引进行一次查找就能找到对应的记录,而在MyISAM中,却需要进行一次回表操作,意味着MylSAM中建立的索引相当于全部都是二级索引。
  2. InnoDB的数据文件本身就是索引文件,而MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。
  3. InnoDB的非聚簇索引data域存储相应记录主键的值,而MyISAM索引记录的是地址。换句话说lnnoDB的所有非聚簇索引都引用主键作为data域。
  4. MyISAM的回表操作是十分快速的,因为是拿着地址偏移量直接到文件中取数据的,反观InnoDB是通过获取主键之后再去聚簇索引里找记录,虽然说也不慢,但还是比不上直接用地址去访问。
  5. InnoDB要求表必须有主键(_MyISAM可以没有)。如果没有显式指定,则MySQL系统会自动选择一个可以非空且唯一标识数据记录的列作为主键。如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型。

小结

了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助。比如:

  1. 举例1:知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有二级索引都引用主键索引,过长的主键索引会令二级索引变得过大。
  2. 举例2:用非单调的字段作为主键在innoDB中不是个好主意,因为InnoDB数据文件本身是一棵B+Tree,非单调的主键会造成在插入新记录时,数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。

mysql索引的数据结构

索引的代价

索引是个好东西,可不能乱建,它在空间和时间上都会有消耗:

  • 空间上的代价
    每建立一个索引都要为它建立一棵B+树,每一棵B+树的每一个节点都是一个数据页,一个页默认会占用16KB的存储空间,一棵很大的B+树由许多数据页组成,那就是很大的一片存储空间。
  • 时间上的代价
    每次对表中的数据进行增、删、改操作时,都需要去修改各个B+树索引。而且我们讲过,B+树每层节点都是按照索引列的值从小到大的顺序排序而组成了双向链表。不论是叶子节点中的记录,还是内节点中的记录(也就是不论是用户记录还是目录项记录)都是按照索引列的值从小到大的顺序而形成了一个单向链表。而增、删、改操作可能会对节点和记录的排序造成破坏,所以存储引擎需要额外的时间进行一些记录移位,页面分裂、页面回收等操作来维护好节点和记录的排序。如果我们建了许多索引,每个索引对应的B+树都要进行相关的维护操作,会给性能拖后腿。

一个表上索引建的越多,就会占用越多的存储空间,在增删改记录的时候性能就越差。为了能建立又好又少的索引,我们得学学这些索引在哪些条件下起作用的。

MySQL数据结构选择的合理性

从MysQL的角度讲,不得不考虑一个现实问题就是磁盘l0。如果我们能让索引的数据结构尽量减少硬盘的l/o操作,所消耗的时间也就越小。可以说,磁盘的 I/0操作次数对索引的使用效率至关重要。

查找都是索引操作,一般来说索引非常大,尤其是关系型数据库,当数据量比较大的时候,索引的大小有可能几个G甚至更多,为了减少索引在内存的占用,数据库索引是存储在外部磁盘上的。当我们利用索引查询的时候,不可能把整个索引全部加载到内存,只能逐一加载,那么MySQL衡量查询效率的标准就是磁盘I0次数。

Hash结构

Hash本身是一个函数,又被称为散列函数,它可以帮助我们大幅提升检索数据的效率。

Hash算法是通过某种确定性的算法(比如MD5、SHA1、SHA2、SHA3)将输入转变为输出。相同的输入永远可以得到相同的输出,假设输入内容有微小偏差,在输出中通常会有不同的结果。

举例:如果你想要验证两个文件是否相同,那么你不需要把两份文件直接拿来比对,只需要让对方把 Hash函数计算得到的结果告诉你即可,然后在本地同样对文件进行Hash 函数的运算,最后通过比较这两个Hash 函数的结果是否相同,就可以知道这两个文件是否相同。

加速查找速度的数据结构,常见的有两类:

  1. 树,例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是o(log2N)
  2. 哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是o(1)(key,value)
    mysql索引的数据结构
    采用Hash进行检索效率非常高,基本上一次检索就可以找到数据,而B树需要自顶向下依次查找,多次访问节点才能找到数据,中间需要多次I/o操作,从效率来说Hash 比 B+树更快

在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h,根据关键字k计算出槽的位置。函数h将关键字域映射到哈希表T[o…m-1]的槽位上。
mysql索引的数据结构
上图中哈希函数h有可能将两个不同的关键字映射到相同的位置,这叫做碰撞,在数据库中一般采用链接法来解决。在链接法中,将散列到同一槽位的元素放在一个链表中,如下图所示:
mysql索引的数据结构

Hash结构效率高,那为什么索引结构要设计成树型呢?

  1. 原因1: Hash索引仅能满足(=)(<>)和IN查询。如果进行范围查询,哈希型的索引,时间复杂度会退化为o(n);而树型的“有序”特性,依然能够保持o(log2N)的高效率。
  2. 原因2: Hash索引还有一个缺陷,数据的存储是没有顺序的,在ORDER BY的情况下,使用Hash索引还需要对数据重新排序。
  3. 原因3:对于联合索引的情况,Hash值是将联合索引键合并后一起来计算的,无法对单独的一个键或者几个索引键进行查询。
  4. 原因4∶对于等值查询来说,通常Hash索引的效率更高,不过也存在一种情况,就是索引列的重复值如果很多,效率就会降低。这是因为遇到Hash冲突时,需要遍历桶中的行指针来进行比较,找到查询的关键字,非常耗时。所以,Hash索引通常不会用到重复值多的列上,比如列为性别、年龄的情况等。

Hash索引适用存储引擎如表所示:

mysql索引的数据结构

Hash索引的适用性:

  1. Hash索引存在着很多限制,相比之下在数据库中B+树索引的使用面会更广,不过也有一些场景采用Hash索引效率更高,比如在键值型(Key-Value)数据库中,Redis 存储的核心就是 Hash表。
  2. MySQL中的Memory存储引擎支持Hash存储,如果我们需要用到查询的临时表时,就可以选择Memory存储引擎,把某个字段设置为Hash 索引,比如字符串类型的字段,进行Hash计算之后长度可以缩短到几个字节。当字段的重复度低,而且经常需要进行等值查询的时候,采用Hash索引是个不错的选择。
  3. 另外,InnoDB本身不支持Hash 索引,但是提供自适应 Hash索引(Adaptive Hash Index)。什么情况下才会使用自适应Hash索引呢?如果某个数据经常被访问,当满足一定条件的时候,就会将这个数据页的地址存放到Hash表中。这样下次查询的时候,就可以直接找到这个页面的所在位置。这样让B+树也具备了Hash 索引的优点。
    mysql索引的数据结构
    采用自适应Hash 索引目的是方便根据SQL的查询条件加速定位到叶子节点,特别是当B+树比较深的时候,通过自适应Hash索引可以明显提高数据的检索效率。

二叉搜索树

如果我们利用二叉树作为索引结构,那么磁盘的Io次数和索引树的高度是相关的

二叉搜索树的特点

  1. 一个节点只能有两个子节点,也就是一个节点度不能超过2
  2. 在子节点<本节点;右子节点>=本节点,比我大的向右,比我小的向左

二叉搜索树也属于二分查找树,极端情况下会退化成了一条链表,查找数据的时间复杂度变成了0(n)。

为了提高查询效率,就需要减少磁盘I0数。为了减少磁盘Io的次数,就需要尽量降低树的高度,需要把原来“瘦高”的树结构变的“矮胖”,树的每层的分叉越多越好。

AVL树

为了解决上面二叉查找树退化成链表的问题,人们提出了平衡二叉搜索树(Balanced Binary Tree),又称为AVL树,它在二叉搜索树的基础上增加了约束,具有以下性质:

  • 它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

数据查询的时间主要依赖于磁盘I/o的次数,如果我们采用二叉树的形式,即使通过平衡二叉搜索树进行了改进,树的深度也是 o(log2n),当n比较大时,深度也是比较高的,比如下图的情况:
mysql索引的数据结构
每访问一次节点就需要进行一次磁盘Ⅰ/О 操作,对于上面的树来说,我们需要进行5次I/O操作。虽然平衡二叉树的效率高,但是树的深度也同样高,这就意味着磁盘Ⅳ/О操作次数多,会影响整体数据查询的效率。

针对同样的数据,如果我们把二叉树改成M叉树(M>2)呢?当M=3时,同样的31个节点可以由下面的三叉树来进行存储:
mysql索引的数据结构
你能看到此时树的高度降低了,当数据量N大的时候,以及树的分叉数M大的时候,M叉树的高度会远小于二叉树的高度(M>2)。所以,我们需要把树从“瘦高"变“矮胖”

B-Tree

B树的英文是Balance Tree,也就是多路平衡查找树。简写为B-Tree(注意横杠表示这两个单词连起来的意思,不是减号)。它的高度远小于平衡二叉树的高度。
mysql索引的数据结构

B树作为多路平衡查找树,它的每一个节点最多可以包括M个子节点,M称为B树的阶。每个磁盘块中包括了关键字和子节点的指针。如果一个磁盘块中包括了x个关键字,那么指针数就是x+1。对于一个100阶的B树来说,如果有3层的话最多可以存储约100万的索引数据。对于大量的索引数据来说,采用B树的结构是非常适合的,因为树的高度要远小于二叉树的高度。

你能看出来在B树的搜索过程中,我们比较的次数并不少,但如果把数据读取出来然后在内存中进行比较,这个时间就是可以忽略不计的。而读取磁盘块本身需要进行I/o操作,消耗的时间比在内存中进行比较所需要的时间要多,是数据查找用时的重要因素。B树相比于平衡二叉树来说磁盘Ⅰ/0О操作要少,在数据查询中比平衡二叉树效率要高。所以只要树的高度足够低,IO次数足够少,就可以提高查询性能

小结:

  1. B树在插入和删除节点的时候如果导致树不平衡,就通过自动调整节点的位置来保持树的自平衡
  2. 关键字集合分布在整棵树中,即吁子节点和非叶子节点都存放数据。搜索有可能在非叶子节点结束
  3. 其搜索性能等价于在关键字全集内做一次二分查找。

B+Tree

B+树也是一种多路搜索树,基于B树做出了改进,主流的DBMS都支持B+树的索引方式,比如MySQL。相比于B-Tree,B+Tree适合文件索引系统。

B+树和B树的差异在于以下几点:

  1. 有k个孩子的节点就有k个关键字。也就是孩子数量=关键字数,而B树中,孩子数量=关键字数+1。
  2. 非叶子节点的关键字也会同时存在在子节点中,并且是在子节点中所有关键字的最大(或最小)。
  3. 非叶子节点仅用于索引,不保存数据记录,跟记录有关的信息都放在叶子节点中。而B树中,非叶子节点既保存索引,也保存数据记录。
  4. 所有关键字都在叶子节点出现,叶子节点构成一个有序链表,而且叶子节点本身按照关键字的大小从小到大顺序链接。

看起来B+树和B树的查询过程差不多,但是B+树和B树有个根本的差异在于,B+树的中间节点并不直接存储数据。这样的好处都有什么呢?

  1. 首先,B+树查询效率更稳定。因为B+树每次只有访问到叶子节点才能找到对应的数据,而在B树中,非叶子节点也会存储数据,这样就会造成查询效率不稳定的情况,有时候访问到了非叶子节点就可以找到关键字,而有时需要访问到叶子节点才能找到关键字。
  2. 其次,B+树的查询效率更高。这是因为通常B+树比B树更矮胖(阶数更大,深度更低),查询所需要的磁盘I/o也会更少。同样的磁盘页大小,B+树可以存储更多的节点关键字。
  3. 不仅是对单个关键字的查询上,在查询范围上,B+树的效率也比B树高。这是因为所有关键字都出现在B+树的叶子节点中,叶子节点之间会有指针,数据又是递增的,这使得我们范围查找可以通过指针连接查找。而在B树中则需要通过中序遍历才能完成查询范围的查找,效率要低很多。

B树和B+树都可以作为索引的数据结构,在 MySQL中采用的是B+树。
但B树和B+树各有自己的应用场景,不能说B+树完全比B树好,反之亦然。

思考题:为了减少Io,索引树会一次性加载吗?

  1. 数据库索引是存储在磁盘上的,如果数据量很大,必然导致索引的大小也会很大,超过几个G。
  2. 当我们利用索引查询时候,是不可能将全部几个c的索引都加载进内存的,我们能做的只能是:逐一加载每一个磁盘页,因为磁盘页对应着索引树的节点。

思考题:B+树的存储能力如何?为何说一般查找行记录,最多只需1~3次磁盘Io

InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT(占用4个字节)或BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为103。也就是说一个深度为3的B+Tree索引可以维护103 * 103 * 103= 10亿条记录。(这里假定一个数据页也存储103条行记录数据了)
实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree 的高度一般都在2-4层。MySQL的 InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘1/o操作

思考题:为什么说B+树比B-树更适合实际应用中操作系统的文件索引和数据库索引?

  1. B+树的磁盘读写代价更低
    B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说Io读写次数也就降低了。
  2. B+树的查询效率更加稳定
    由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当

思考题:Hash索引与B+树索引的区别??

我们之前讲到过B+树索引的结构,Hash索引结构和B+树的不同,因此在索引使用上也会有差别。

  1. Hash索引不能进行范围查询,而B+树可以。这是因为Hash索引指向的数据是无序的,而B+树的叶子节点是个有序的链表.
  2. Hash索引不支持联合索引的最左侧原则(即联合索引的部分索引无法使用),而B+树可以。对于联合索引来说,Hash 索引在计算Hash值的时候是将索引键合并后再一起计算Hash值,所以不会针对每个索引单独计算Hash值。因此如果用到联合索引的一个或者几个索引时,联合索引无法被利用。
  3. Hash索引不支持ORDER BY排序,因为Hash索引指向的数据是无序的,因此无法起到排序优化的作用,而B+树索引数据是有序的,可以起到对该字段ORDER BY排序优化的作用。同理,我们也无法用Hash索引进行模糊查询,而B+树使用LIKE进行模糊查询的时候,LIKE后面模糊查询(比如%结尾)的话就可以起到优化作用
  4. InnoDB不支持Hash索引

思考题:Hash索引与B+树索引是在建索引的时候手动指定的吗?

mysql索引的数据结构
你能看到,针对InnoDB和MyISAM存储引擎,都会默认采用B+树索引,无法使用Hash索引。InnoDB提供的自适应Hash是不需要手动指定的。如果是Memory/Heap和NDB存储引擎,是可以进行选择Hast索引的

小结

  • 使用索引可以帮助我们从海量的数据中快速定位想要查找的数据,不过索引也存在一些不足,比如占用存储空间、降低数据库写操作的性能等,如果有多个索引还会增加索引选择的时间。当我们使用索引时,需要平衡索引的利(提升查询效率)和弊(维护索引所的代价)。
  • 在实际工作中,我们还需要基于需求和数据本身的分布情况来确定是否使用索引,尽管索引不是万能的,`但数据量大的时候不使用索引是不可想象的,毕竟索引的本质,是帮助我们提升数据检索的效率。
版权声明:程序员胖胖胖虎阿 发表于 2022年9月14日 上午8:48。
转载请注明:mysql索引的数据结构 | 胖虎的工具箱-编程导航

相关文章

暂无评论

暂无评论...