RSA算法详解

2年前 (2022) 程序员胖胖胖虎阿
441 0 0

文章目录

  • ​​什么是RSA​​
  • ​​RSA的加密​​
  • ​​RSA的解密​​
  • ​​N,E,D的生成​​
  • ​​1. 生成N​​
  • ​​2. 求L​​
  • ​​3. 求E​​
  • ​​4. 求D​​
  • ​​破解RSA​​

什么是RSA

前面文章我们讲了AES算法,AES算法是一种是对称加密算法,本文我们来介绍一个十分常用的非对称加密算法RSA。

非对称加密算法也叫公钥密码算法,通过生成的公私钥来对明文密文进行加密解密。 RSA的名字是由它的三个开发者Ron Rivest, Adi Shamir和 Leonard Adleman的首字母而来的。

RSA公司在1983年为RSA算法申请了专利。

RSA的加密

RSA的加密可以用下面的公式来表示:

                       密                    文                    =                    明                             文                         E                                                 m                    o                    d                                         N                         密文=明文^E\ mod\ N           密文=明文E mod N

通过公式我们可以知道RSA的密文是通过明文的E次方再对N进行mod运算得到的。这个加密过程只用到了阶乘和取模运算,可以算是非常简单明了了。

简洁的才是最好的,这可能也是RSA算法这么通用的原因吧。

如果知道了E和N,那么就可以得到密文,所以我们把E和N的组合称为公钥,可以这样表示 公钥{E,N}。

如何选择E和N是一个复杂的数学过程,我们会在后面讲到。

RSA的解密

先看一下RSA解密的公式:

                       明                    文                                         =                                         密                             文                         D                                                 m                    o                    d                                         N                         明文\ =\ 密文^D\ mod\ N           明文 = 密文D mod N

通过公式可以看到,明文是通过密文的D次方,再和N取模得到的。这里的N和加密的N是同一个数字。

D和N的组合表示为私钥{D,N}。

N,E,D的生成

知道了RSA的加密和解密原理之后,接下来我们就要探讨一下加密和解密过程中的N,E,D是怎么生成的。

生成过程如下:

1. 生成N

生成N的公式如下:

                       N                    =                    p                    ∗                    q                         N=p*q           N=p∗q

p和q是两个很大的质数,太小的话容易被破译,太大的话会影响计算速度。通常p和q的大小为1024比特。这两个数是通过伪随机数生成器生成的。伪随机数生成器不能直接生成质数,它是通过不断的重试得到的。

2. 求L

L是一个中间数,它和p,q一样,不会出现在RSA的加密和解密过程。

L的计算公式如下:

                       L                    =                    l                    c                    m                    (                    p                    −                    1                    ,                    q                    −                    1                    )                         L=lcm(p-1, q-1)           L=lcm(p−1,q−1)

L是p-1和q-1的最小公倍数

3. 求E

E就是用来加密的公钥了,E是一个比1大,比L小的数。并且E和L必须互质。只有E和L互质才能计算出D值。

                       1                    <                    E                    <                    L                         1< E < L           1<E<L

                       g                    c                    d                    (                    E                    ,                    L                    )                    =                    1                         gcd(E,L)=1           gcd(E,L)=1

这里E也是通过伪随机数生成器来生成的。

找到了E和N,我们的公钥就生成了。

4. 求D

计算D的公式如下:

                       1                    <                    D                    <                    E                         1<D<E           1<D<E

                       E                    ∗                    D                                         m                    o                    d                                         L                    =                    1                         E*D\ mod\ L=1           E∗D mod L=1

破解RSA

如果想破解RSA, 对于密码破解者来说,他知道了公钥{E,N}, 知道了密文,根据公式:

                       密                    文                    =                    明                             文                         E                                                 m                    o                    d                                         N                         密文=明文^E\ mod\ N           密文=明文E mod N

有没有可能直接通过已知的三个变量,求出未知变量明文呢?

这个求解其实是一个离散对数的问题。目前还没有发现求离散对数的高效的方法。可以说是非常困难的。

那么有没有可能通够暴力破解来得出密钥中的D呢?

目前RSA算法中p和q的长度一般为1024比特以上,生成的N的长度为2048比特以上,E和D的长度和N差不多,如果要暴力破解2048比特的D是非常困难的。

由公式:

                       E                    ∗                    D                                         m                    o                    d                                         L                    =                    1                         E*D\ mod\ L=1           E∗D mod L=1

可知,如果破解者知道了L的值,那么就可以轻易的求出D。而L是通过p和q计算出来的,所以p和q一定要保密,否则跟密码泄露是一样的。

因为 N= p * q , 而p和q都是质数, N又是已知的,那么我们可不可以通过质因数分解来得到 p和q呢?

目前来说,还没有有效的对大整数进行质因素分解的高效算法,所以目前来说RSA算法还是很安全的,但是一旦有这样的算法出现,那么RSA将会很容易被攻破。

所以官方推荐:1024比特的RSA算法不应该被用于新的用途。2048比特的RSA算法可以用到2030年,4096比特的算法可以用到2031年。

版权声明:程序员胖胖胖虎阿 发表于 2022年9月21日 上午4:48。
转载请注明:RSA算法详解 | 胖虎的工具箱-编程导航

相关文章

暂无评论

暂无评论...